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Abstract
The current and rapid anthropogenic environmental changes could disproportionately impact ecosystems, particularly when 
they affect species with critical roles in ecosystem integrity. As top predators, raptors provide critical top-down ecosystem 
services and structure food webs. Yet, many avian predators are currently experiencing global population declines and some 
are threatened with extinction. The dire conservation status of numerous raptor species warrants urgent action, and detailed 
ecological data are needed to guide management strategy, including empirical knowledge regarding genetic structure. To 
that end, we compiled published studies investigating population genetic structure in raptors. Out of a total of 83 publica-
tions on 50 raptors species published, we identified a lack of empirical genetic studies for species from the Southern Hemi-
sphere and species with a high level of extinction risk according to IUCN Red List criteria. Only 24% of the species studied 
are considered “threatened” (i.e., with the “Vulnerable”, “Endangered”, or “Critically Endangered” status). We found a 
significant signal of genetic differentiation in 41 species (82%) at the study-specific population. Isolation-by-Distance is a 
common pattern of genetic differentiation in raptors. Future steps in raptor conservation could prioritize facilitating genetic 
studies on species located in the Southern Hemisphere and on species with a conservation status. A better inclusion of some 
key genetic metrics (e.g., Ne, Ne/Nc, genetic diversity) in published studies will further help management and conservation 
across various species and ecosystems.
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Introduction

Around the world, birds of prey characterize ecosystems 
hosting a high level of biodiversity (Sergio et al. 2006; Tina-
jero et al. 2017) where they structure biological communities 
(Sergio et al. 2007), and act as indicators of environmental 
health (Donázar et al. 2016). Indeed, raptors can play regula-
tory roles in several ecosystems as they exert top-down pres-
sures on prey communities (Therrien et al. 2014; O’Bryan 
et al. 2018; Terraube and Bretagnolle 2018). In addition, a 

diverse suite of scavenging raptors consumes considerable 
amounts of biomass, limiting outbreaks of disease-carrying 
organisms (García-Alfonso et al. 2019). Global anthropo-
genic activities, however, currently have profound negative 
impacts on biodiversity (Johnson et al. 2017) and species 
abundance (e.g., Rosenberg et al. 2019), leading to known 
disruption in ecosystem services and alterations in human 
well-being (Sekercioglu et al. 2004; Balmford and Bond 
2005; Haines-Young and Potschin 2010; Kremen 2018), 
underlining the dramatic consequences of key species loss 
on ecosystems functioning. For example, in India cata-
strophic economic and public health issues have arisen due 
to massive decline in vulture populations which has allowed 
feral dogs, carrying rabies, to fill the scavenging niche in 
the ecosystem (Markandya et al. 2008). As the natural envi-
ronment continues to be altered, raptor populations have 
become fragmented and have decreased often to the point 
of endangerment (Sarasola et al. 2019). In a recent review, 
McClure et al. (2018) reported that 18% of all 557 raptor 
species are now considered threatened with extinction and 
52% of them are exhibiting global population declines. In 
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such a context, there is a critical need to improve and refine 
the current toolbox for the conservation of birds of prey 
worldwide (e.g., McClure et al. 2018; Buechley et al. 2019).

Over the last two decades, population genetics has 
emerged as an important tool for wildlife conservation (see 
Martínez-Cruz and Méndez Camarena 2019 for a descrip-
tion and examples of application). Indeed, population 
genetic assessments (e.g., genetic diversity, demographic 
history, or spatial population genetic structure) on a species 
or populations became central in, for instance, the designa-
tion of evolutionarily significant (ESUs; Crandall et al. 2000; 
Fraser and Bernatchez 2001) and management units (MUs; 
Frankham et al. 2002; Palsboll et al. 2007). Estimating 
genetic diversity allows researchers to evaluate population 
viability, which is essential for understanding and predicting 
genetic drift and inbreeding depression while safeguarding 
the evolutionary potential to adapt to a changing environ-
ment (Bruford et al. 2010; Allendorf et al. 2012). Conserv-
ing and monitoring genetic diversity within species is now 
one of the priorities in conservation programs (Hoban et al. 
2013, 2020), and implemented strategies should aim to halt 
genetic erosion and preserve the adaptive potential of popu-
lations (Laikre et al. 2020).

In conservation biology, the effective population size (Ne) 
is an important key element (e.g., Rieman and Allendorf 
2001; Kamath et al. 2015; Markov et al. 2016), because it 
informs on the demographic trend of populations and spe-
cies. Ne quantifies the impact of genetic drift in depleting 
genetic diversity by fixing and eliminating alleles in natural 
populations (Frankham 1995; Gilbert and Whitlock 2015). 
It also provides the prospects for the sustainability of the 
population if the current effective size is maintained into the 
future (Frankham et al. 2002, 2014; Allendorf et al. 2012). 
It can be used to assess the effectiveness of genetic man-
agement (e.g., human-aided migration/relocation, habitat 
protection, or modification; Wang et al. 2016). A second 
complementary variable in a conservation context is the 
adult census size (Nc; Frankham 1995; Waples 2005; Waples 
et al. 2014). In particular, knowledge on the ratio of Ne/
Nc is important for disentangling the relative importance of 
demography and genetic factors on the fate and persistence 
of species (Frankham 1995; Palstra and Ruzzante 2008). A 
population with a small Ne/Nc ratio will have a higher rate 
of gene diversity loss than a population with the same Ne 
but with a higher Ne/Nc ratio (e.g., Ferchaud et al. 2016).

After more than two decades of use and democratization 
of population genetics in theoretical and applied ecology, we 
considered a review of literature timely to assess the current 
state of knowledge (and gaps within) on population genet-
ics for birds of prey, and suggesting where future research 
should focus. Reviews on population genetics exist for sev-
eral taxonomic groups (e.g., fishes, Waples et al. 2020; tropi-
cal amphibians, Monteiro et al. 2019; seabirds, Friesen et al. 

2007; Lombal et al. 2020) but none targeted raptors thus far. 
Systematic reviews of specific taxa provide a general portrait 
and can identify conservation priorities, e.g., habitat protec-
tion and improvement in the management of land for bird 
species (Azpiroz et al. 2012) or prioritize conservation of 
shark and ray species with narrow geographic distributions 
and subjected to overexploitation (Domingues et al. 2018).

Here, we specifically (1) assess trends in scientific publi-
cations on population genetic structure for raptors over time, 
including the type of genetic markers used; (2) report and 
summarize the analytical methods commonly used to eluci-
date population genetic structure; (3) identify which raptor 
species are being studied in concerning the species-specific 
conservation status and population trends. Based on some 
key findings following our first three objectives, we are also 
(4) mapping the current knowledge gaps in population genet-
ics in raptors and suggesting specific recommendations to 
overcome them.

Materials and methods

Studied species

Raptors are mobile species with broad distributions (Sar-
asola et al. 2019). Of the 557 extant species worldwide, 
about 202 are migratory (Bildstein 2006; Del Hoyo et al. 
2019). Raptors are paraphyletic and belong to five families: 
Accipitridae (eagles, kites, hawks and Old World vultures), 
Strigidae (owls), Falconidae (falcons, kestrels, caracaras), 
Cathartidae (New World vultures), Sagittariidae (secreta-
rybirds), and Pandionidae (ospreys; McClure et al. 2019).

Literature survey

We conducted a literature survey through Scopus and ISI 
Web of Science databases, using the following combinations 
of keywords: “population genetic*” or “population struc-
ture” or “population genomic*” and “raptor*” or “bird of 
prey” or “eagle” or “hawk” or “falcon” or “owl” or “harrier” 
or “vulture” or “buzzard” or “kestrel” or “osprey” or “kite” 
or “caracara” or “secretarybird”. We deliberately added the 
common genetic markers used in ecology (Allendorf et al. 
2012) as keywords: “SNP*”, “microsatellite*” or “mtDNA” 
or “mitochondria” or “allozyme*” to restrict the search. We 
did not consider “nuclear sequence” as a keyword. While 
we recognize the utility of nuclear amplicon sequencing 
(e.g., MHC; Alcaide et al. 2007; Minias et al. 2019), to 
infer phylogenetic relationship among species or to investi-
gate genome evolution (e.g., Mahmood et al. 2014), nuclear 
sequences are rarely used in population genetics study to 
infer neutral population structure and gene flow, except to 
characterize SNP or microsatellite loci (Zhang and Hewitt 



Conservation Genetics 

1 3

2003). This searching step generated a total of 331 arti-
cles. We excluded the articles common to both databases, for 
a total of 203 unique papers. We narrowed down our selec-
tion of studies by excluding off-topic research fields (See 
Fig. 1 for a summary of study refinement). Here, we only 
focused on studies that had inferred contemporary genetic 
structure at the intraspecific level. We also screened the ref-
erences of each selected article to retrieve studies that might 
be relevant and that we could have missed in the literature 
survey. We additionally found some references in Sarasola 
et al. (2019).

Data collection

Information collected from each study

We recorded the following information for each article: 
genus, species, main study objective (as reported by the 
authors), hypothesis, location of the study, type of genetic 
markers used, number of markers, fragment size for 

mtDNA markers (in base pairs), DNA source (e.g., non-
destructive: buccal swab, blood, feathers vs. destructive: 
tissue/muscle), state of the sampled bird (i.e., dead, alive 
or museum specimen), number of populations sampled and 
sample size (n), software used for genetic analysis, genetic 
differentiation observed (yes/no), number of genetic clus-
ters inferred, and effective population size (Ne). We also 
reported the isolation-by-distance (IBD) analysis pattern 
(i.e., a decrease of genetic similarity with an increase 
of geographic distance; Wright 1943), the number of 
alleles or allelic richness, summary genetic statistics used 
(i.e., Fst, Rst, or Gst, the most common indices of genetic 
structure; Meirmans and Hedrick 2011), observed and 
expected heterozygosity (He, Ho; average, maximum and 
minimum), and haplotype diversity for DNA sequences. 
Heterozygosity and haplotype diversity are used as a 
measure of genetic diversity (Allendorf et  al. 2012). 
We also recorded the scale of the study: low < 599 km, 
medium: 600–1099  km, large: 1100–4000  km, very 
large: > 4000 km. To do so, we recorded the two most 

Fig. 1  Stages of selection and 
exclusion of scientific articles 
in our review on population 
genetic in birds of prey. The 
search engines used were Web 
of Science and Scopus. The 
number of articles (n) is indi-
cated for each stage
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distant sampling locations in the study using the available 
figures or the geographic coordinates. After, we grouped 
the study in the four arbitrary categories of scales listed 
above.

Species traits

To better described the diversity of species traits covered by 
population genetics studies in the literature, for each species 
studied, we assigned its migration strategies as being either 
resident (non-migrant), facultative (include partial, i.e., irreg-
ular migration), or obligate (include complete; Dingle and 
Drake 2007; Newton 2008) and taxonomic family. When such 
information was not in the original article, we used the follow-
ing resources: The Birds of North America (Rodewald 2015); 
Eagle, hawks and falcons of the world (Brown and Amadon 
1968); and Migrating raptors of the world (Bildstein 2006). 
We also recorded the average body mass for each species using 
the Handbook of the Birds of the World (Del Hoyo et al. 2019). 
For each species, we used the IUCN Red List (International 
Union for Conservation of Nature) of threatened species to 
include the status and the population trends of the species in 
the database. The IUCN Red List classified species into cat-
egories of extinction risk (Least Concern, Near Threatened, 
Vulnerable, Endangered, Critically Endangered, Extinct in 
the Wild, and Extinct) based on quantitative criteria on the 
up-to-date size and trends of species populations and species 
distribution ranges (IUCN Standards and Petitions Subcom-
mittee 2017).

Phylogenetics of the studied species

To illustrate what proportion of raptor phylogenetic diversity 
our literature survey covered, we inferred the phylogenetic 
relationship among most species listed in our database. To do 
so, we retrieved from Genbank the cytochrome b mitochon-
drial DNA (cyt b) sequences available for raptors, totaling 48 
species out of 50 species included in the review (Table S1). 
The tree was rooted with the Hoatzin, Opisthocomus hoa-
zin as an outgroup (GenBank Acc. number: AF168119; see 
Supplementary for method). The gene phylogeny presented 
here is not intended to replace species phylogeny but to illus-
trate the diversity of raptor species and families studied so far 
without pretending to resolve the phylogenetic links between 
them. For a large-scale phylogeny of birds, including few 
raptor species, the readers may, however, refer to Jarvis et al. 
(2014)  and Kimball et al. (2019).

Results

Raptor data set

Our search resulted in a total of 83 peer-reviewed sci-
entific journal articles assessing population genetics in 
raptors. Among these, 50 species from 23 genera were 
studied (Table S1). More than 50% of the studied popula-
tions were located in Europe (n = 33) or North America 
(n = 26; Fig. 2a). Seven studies were performed in Asia, 
three in Africa, one in Oceania, six in South America, 
and seven studies were located at the scale of the spe-
cies distribution, encompassing more than one continent. 
Overall, the main research objectives (but not exclusive) 
were population genetic structure (n = 26 studies), conser-
vation (n = 14), genetic diversity (n = 13), phylogeography 
(n = 9), gene flow (n = 6), connectivity (n = 5), and others 
(n = 10). Twenty-three studied species were characterized 
as residents (non-migrants), 17 as facultative migrants, 
and 10 species as obligate migrants (Table S1). The phylo-
genetic tree (Fig. 2b and Table S1) illustrated that there is 
no obligate migrant in the Strigidae family investigated so 
far. Indeed, the studied Strigidae had 67% resident species, 
which is more than any other family. Twenty-one stud-
ies (25%) had a low scale (LO: < 599 km), eleven studies 
(13%) had a medium scale (M: 600–1099 km), 23 studies 
(28%) had a large scale (L: 1100–4000 km), and 28 studies 
(34%) had a very large scale (VL: > 4000 km; Table S1). 
The mean sample size of individuals studied per study 
was 223 with a standard deviation of 223 and a median of 
172. The maximum sample size was 1671 and the mini-
mum was 40 individuals. The mean number of individuals 
sampled per population was 38 with a maximum of 244 
individuals/population and a minimum of 5 individuals/
population. Isolation-by-distance (IBD) was tested in 34 
studies (41%; Table S1). Among them, 21 studies (62%) 
showed a significant IBD pattern: 70% for LO study scale 
(7 on 10), 60% for M (3 on 5), 50% for L (4 on 8), and 
63% for VL study scale (7 on 11). A total of 23% of the 
studies (n = 19) provided online access to their data on one 
or more data deposits. Raw data were available in supple-
mentary material (n = 5, 24%), on Dryad (n = 3, 14%), on 
Genbank (n = 12, 57%), or on Figshare (n = 1, 5%).

Prevalence of genetic markers in use over time 
in raptors research

Overall, nuclear microsatellite markers (n = 40 studies) 
were the most widely used genetic markers, with more than 
half of these studies (n = 21) using both microsatellites and 
mitochondrial DNA (mtDNA), and 14 studies used only 
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mtDNA (Fig. 3a). The mean number of microsatellites 
used was 13 ± 6, with a maximum of 36 and a minimum 
of 3. For mtDNA markers, the control region was the 
sequence used in 92% of the 53 studies. Mean fragment 
size was 686 ± 469 base pairs (interval = 345–2300 bp). In 
the early 2000s, other types of markers were also used in 
two articles (i.e., variable number tandem repeat [VNTR] 
and random amplified polymorphic DNAs [RAPDs]). Six 
studies used SNPs (Single Nucleotide Polymorphisms; 
Fig. 3a), with the first such study published in 2016. The 
most published articles in a single year happened in 2018 
(n = 10, Fig. 3b).

Raptor conservation status and species studied

Among the 50 studied species, 12 of them (24%) were con-
sidered threatened (i.e., IUCN status Vulnerable, Endan-
gered or Critically Endangered) with a further nine spe-
cies (18%) classified as Near Threatened (Fig. 5d). The 29 
other species (58%) were classified as of Least Concern. 
The Accipitridae had the highest proportion of threatened 
species which has been studied, with nine threatened (36%) 
out of 25 species. The Accipitridae also had population 
genetic studies on two Critically Endangered species, the 
highest level of threat (Fig. 5a): the Madagascar fish-eagle 

Fig. 2  a Sampling locations of 
the surveyed studies published 
between 2000 and 2020. Family 
groups are indicated by colors 
(Dark pink = Accipitridae 
[n = 41], Light blue = Cathar-
tidae [n = 1], Dark blue = Fal-
conidae [n = 14] and Light 
orange = Strigidae [n = 20]). 
Seven studies (Accipitridae = 3, 
Falconidae = 2, Pandionidae = 1 
and Strigidae = 1) based on 
multiple continents are not rep-
resented on the map. b Illustra-
tive phylogenetic tree of raptor 
species studied with population 
genetics. Tree was obtained 
using a maximum likelihood 
approach based on cytochrome 
b sequences retrieved from 
Genbank and was rooted with 
the Hoatzin, Opisthocomus hoa-
zin as an outgroup (GenBank 
Acc. number: AF168119)
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Haliaeetus vociferoides (Johnson et al. 2008) and the Ridg-
way’s hawk Buteo ridgwagi (Woolaver et al. 2013). Most 
studies were focused on species exhibiting decreasing popu-
lation trends (53%, Fig. 5d). Species with stable population 
trends were addressed in 31% of all cases. Decreasing trends 
were observed more prominently in Strigidae (9 species, 
60%) and in Accipitridae (13 species, 54%). The Strigidae 
had the lowest percentage of studied species (n = 16 out of 
236 species or 7%, Fig. 5b). By increasing order, we then 
have the Accipitridae (25 out of a total of 234 species; 11%), 
the Falconidae (7 out of 64 species; 11%), the Cathartidae (a 
single species among a total of 7; 14%, Fig. 4b). Finally, the 
only species of the Pandionidae has been studied (Fig. 4b). 

Between 2000 and 2020, only 9% of all raptor species have 
been studied (50 out of 557 species Fig. 4c). Overall, there 
is information on population genetics for less than 30% of all 
raptor species, but for Strigidae, Falconidae, and Accipitri-
dae, this value is less than 15% (Fig. 5b). 

Detecting population genetic structure in raptors

Most of the studies (76%, n = 63) detected significant 
genetic differentiation at the scale of the studies with 
an average number of genetic clusters of 2.29 ± 1.11 
and a maximum of six. Significant genetic structure was 
detected in 25 studies (86%) of residents, 25 studies (71%) 

Fig. 3  a Cumulative number of 
raptor studies (n = 81) sorted 
by the type of genetic markers 
used, published between 2000 
and 2020. b Number of raptor 
studies produced per year
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of facultative migrants, and 13 (76%) studies of obligate 
migrants. A total of 41 species (82%) had at least one 
study that revealed population structure. Sixty-nine per-
cent of the studies used the software Structure (Pritchard 
et al. 2000) for inferring the number of clusters and the 
presence of genetic structure. Eighty-six percent also 
published the software settings to allow reproducibility 
of analyses. This software was often used in combination 
with other software like Arlequin (Excoffier et al. 2005), 
Genepop (Rousset 2008), or genalex (Peakall and Smouse 
2012). One study used Beast (Drummond and Rambaut 
2007), two studies used Geneland for complementary 
clustering results (Guillot et al. 2005), and two studies 
with SNPs based their results on Admixture (Alexander 
et al. 2009) for assessing population structure. A total of 
15 articles (18%) presented effective population size (Ne) 
estimations (Table S1). The most commonly used software 
to estimate effective population size (Ne) was Neestimator 
v2 with the linkage disequilibrium (LD) method (Do et al. 
2014). Only one article reported the ratio of the effective 
size and census size (Ne/Nc), with a value of 0.044 for the 
Africain cape vulture Gyps coprotheres (Kleinhans and 
Willows-Munro 2019). Mean expected heterozygosity 
(He) seemed similar across conservation status (Fig. 6a) 

and per families (Fig. 6b). The low sample sizes for some 
categories preclude statistically test differences in family 
or IUCN Red List levels.

Discussion

While population genetics is a key component of any con-
servation and management program (Allendorf et al. 2012), 
our results highlight the fact that a very small percentage 
of raptors have been investigated so far (i.e., 9%; Fig. 5a), 
and most of these studies are geographically biased towards 
North America (n = 26, 31%) and Europe (n = 33, 40%; 
Fig. 4c). Following our investigation, we can conclude that 
species considered “threatened” (i.e., with the “Vulnerable”, 
“Endangered”, or “Critically Endangered” status; Fig. 4a) 
are underrepresented in the raptor genetics’ literature. That 
means that species of conservation importance are those for 
which we have little or no genetic information. Strigidae 
was the family with the lower percentage of investigated 
species. That could be related to the fact that these species 
are mostly nocturnal and may be more difficult to monitor. 
Genetic diversity (He), a key component of conservation 
practice (Hoban et al. 2013, 2020) was available in many 

Fig. 4  Maps showing the number of a total b threatened and declin-
ing c percentage of genetically investigated d percentage of geneti-
cally investigated threatened and declining extant raptors per country. 
The scale represents the number of raptor species and ranges from 

purple, indicating many species, to yellow, indicating few species. 
Data from a and b came from McClure et  al. (2018). Original data 
came from BirdLife International (2017) downloaded in April 2019
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species, but at a different level, i.e., He at the sample (e.g., 
individual, or population) or at the locus levels. This makes 
any comparison between family, conservation level, or 
migration behavior almost impossible.

With the available studies and data, we were also unable 
to perform any kind of meta-analysis. We were limited by 
the number of papers available in the literature that per-
formed similar analyses or reported the same metrics when 
analyzing population genetic structure. Indeed, some authors 
reported global F-statistics or pairwise Fst while others only 

presented results of bayesian or multivariate clustering. This 
heterogeneity in reported metrics prevented us to perform a 
strict meta-analysis; it was indeed difficult to find a standard-
ized effect size for e.g., Fst = 0.001 vs. K = 5 obtained with 
the software Structure. This situation prevented us from find-
ing potential common patterns (e.g., environmental, demo-
graphic, e.g., De Kort et al. (2021)) in the genetic structure 
studies of raptors. Such limitations could negatively affect 
the effective conservation of raptors.

Fig. 5  a Number of species 
studied for each raptor family 
within each IUCN Red List 
category (Critically Endangered 
[CE], Endangered [EN], Vulner-
able [VU], Near Threatened 
[NT] and Least Concern [LC]). 
b Proportion (in percentage) of 
the studied species on the total 
number of species compris-
ing the family (n represents 
the number of species studied 
included in this review)
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Prevalence of genetic markers in use over time 
in raptors research

Microsatellite markers have been the most commonly used 
type of genetic marker in raptor population genetics so far 
(See Supplementary for a summary of advantages and incon-
venience of using genetic markers; Fig. 3a). In the over-
all conservation genetics realm, Single Nucleotide Poly-
morphism (SNPs) has been increasingly used since 2004 
(Morin et al. 2004) and became the go-to marker in many 
taxa because of its potential for higher genotyping efficiency, 

data quality, resolution, genome-wide coverage, and high 
variability (Morin et al. 2009). Yet, these biallelic makers 
only recently began to be used as genetic markers for birds 
of prey. With the recent development in genomic techniques 
(e.g., next-generation sequencing, whole-genome scans), it 
is becoming possible to apply SNPs to non–model species 
of ecological and conservation relevance (Martinez-Cruz 
2011; Hendricks et al. 2018). For example, with these data, 
it is possible to understand patterns of adaptive variation in 
endangered species where traditional approaches had previ-
ously failed (Manel et al. 2010; Nielsen et al. 2012) with 

Fig. 6  a Boxplot of mean 
expected heterozygosity within 
each IUCN Red List category 
(Critically Endangered [CE], 
Endangered [EN], Vulnerable 
[VU], Near Threatened [NT] 
and Least Concern [LC]). b 
Boxplot of mean expected het-
erozygosity within each raptor 
families
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direct application to defining conservation units (Funk et al. 
2012). Indeed, only six studies (7%; Fig. 3a) used SNPs, and 
increasing the number of studies with this type of marker 
could be advantageous in the conservation of threatened rap-
tors. However, there are still some challenges (e.g., software 
complexity, cost of sequencing a full genome) to overcome 
before genomic tools can be used to their full potential for 
conservation genomics (see Kraus and Wink (2015) for the 
application of genomics in birds; Shafer et al. 2015).

Detecting population genetic structure in raptors

The software Structure for clustering methods for popu-
lation differentiation was the most widely used software 
according to a methodological review of Latch et al. (2006) 
and still returns 19,390 records on Web of Science-Core-
Collection by 04/27/2020 and then the number of records per 
year is still increasing since the initial article that described 
the method was published in 2000 (Pritchard et al. 2000). 
According to our results, this trend also applies to studies 
on raptors. However, this software suffers some drawbacks 
discussed in depth in recent publications (Puechmaille 2016; 
Wang 2017), e.g., when the sample size is uneven between 
subpopulations, or when sampling is not spatially balanced 
or discontinuous (Serre and Pääbo 2004; Lawson-Handley 
et al. 2007). More generally, reproducibility of results is a 
problem in ecology and population genetics is no exception. 
Several authors, therefore, argue for an in-depth reporting 
of settings and parameters used in the Structure (Gilbert 
et al. 2012) or in other population genetics software (e.g., 
Miller et al. 2020) to allow better comparison among taxa. 
We argue here that raptor genetic studies are not immune 
to this issue.

Isolation-by-distance (IBD; Wright 1943) a decrease 
in genetic similarity among populations as the geographic 
distance between them increases (Rousset 1997) driven by 
migration-drift equilibrium, is often used in population 
genetic studies (Jenkins et al. 2010; Wang et al. 2013) to 
assess the effect of distance only on genetic differentiation, 
in conjunction for example with more meaningful landscape-
related distances (e.g., through an isolation-by-resistance, 
IBR; McRae and Beier 2007; isolation-by-environment, 
IBE; Wang and Bradburd 2014 approaches). Following our 
systematic review, IBD is a ubiquitous pattern in the genetic 
differentiation in raptors. Moreover, we identified that a sig-
nificant IBD is more common at small (i.e., < 599 km) or 
very large study (i.e., > 4000 km) scales.

There are urgent need to link movement behavior and 
genetic studies as it can help characterize connectivity, 
migratory divide, and gene flow among populations (Agudo 
et al. 2011; Ruegg et al. 2014; Delmore and Irwin 2014; 
Shafer et al. 2016; Sherry 2018). Only a single publication 
on birds of prey, focusing on the Egyptian vulture Neophron 

percnoterus, used movement tracking data together with 
genetic data in the same study design (Agudo et al. 2011). 
Indeed, combining animal tracking technology (i.e., allow-
ing the fine study of individual movement) with genetic data 
could help elucidate many ecological and evolutionary pro-
cesses (e.g., migration, hibernation, responses to environ-
mental changes; Shafer et al. 2016). Examples of such an 
approach combining movement data and genetics exist in 
mammals (e.g., satellite telemetry with microsatellites for 
assessing responses to environmental changes in ringed seals 
Pusa hispida; Martinez-Bakker et al. 2013), and other bird 
taxa (e.g., radio transmitters combined with genomic data 
to characterize migratory behavior of partial migration in 
blackbirds Turdus merula; Franchini et al. 2017; band recov-
eries and mtDNA to evaluate migratory divide in Swainson’s 
trushes Catharus ustulatus; Delmore et al. 2012). Unfortu-
nately, no such studies are available for raptors. In addition, 
stable isotopes (e.g., carbon or nitrogen) are also being used 
in conjunction with genetic information to infer the origin 
of migratory species (e.g., Clegg et al. 2003; Zimmo et al. 
2012; Katzner et al. 2017; Pokrovsky 2018). Yet, we are not 
aware of any study that combined genetic data with tracking 
data and stable isotopes in raptors.

Effective population size (Ne) in raptors

The most common research priorities for raptor species 
according to the IUCN Red List assessments are to meas-
ure the current and past population demographic trends 
(McClure et al. 2018). However, the lack of data is a com-
mon challenge for most species, and raptors are no excep-
tion (i.e., population long-term monitoring or monitoring of 
many individuals over several generations is a long and often 
costly task). By using genetic information, it is possible to 
address these needs by assessing genetic drift and changes 
of Ne over time (Waples 2016). Estimation of Ne is crucial 
for the management of endangered species. In general, a 
minimum value of Ne of 100 individuals is advised to pre-
vent loss of genetic diversity by genetic drift for five gen-
erations and Ne of 1000 individuals to maintain long-term 
evolutionary potential (Frankham et al. 2014). According to 
our systematic review, we retrieved Ne/Nc ratio for only one 
raptor species, i.e., the Africain cape vulture G. coprotheres 
(Kleinhans and Willows-Munro 2019). This type of informa-
tion is sorely lacking in our literature review and will need 
to be largely addressed in conservation programs.

Nevertheless, obstacles persist for the practical applica-
tion of Ne, e.g., the need to characterize the temporal and 
spatial scales of Ne estimations can render the results dif-
ficult to interpret (Hare et al. 2011). Also, there are numer-
ous methods to compute Ne (Frankham 1995; Gilbert and 
Whitlock 2015; Greenbaum et  al. 2018). Despite such 
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shortcomings, many publications use Ne estimates for the 
management of populations especially to infer popula-
tion demographic trajectories (e.g., Frankham 1995; Hare 
et al. 2011; Husemann et al. 2016). For comprehensive and 
detailed reviews on the application and utilization of Ne, see 
e.g., (Wang et al. 2016; Waples 2016).

Raptor conservation status vs. studied species 
for population genetics

Of all 557 raptor species, 103 species (18%) are considered 
threatened (Vulnerable, Endangered or Critically Endan-
gered), with a further 70 (13%) classified as Near Threat-
ened (McClure et al. 2018). Although our review points to 
25% of genetic studies targeting species with conservation 
priorities, only 12 of the 103 threatened species (12%) have 
been examined so far. Our results also show that there are 
more genetic studies on species with a lower level of threat 
(Fig. 5a). McClure et al. (2018) showed that Asia, Africa, 
and South America were the regions with the most threat-
ened and declining raptor species (Fig. 4b), and yet, these 
same regions are also underrepresented in genetic studies 
conducted since 2000. The raptors located in South Amer-
ica, Africa, and Southeast Asia are also identified as a high 
priority for raptor research and conservation (Buechley et al. 
2019). Knowledge of the population genetics of these spe-
cies could be a great start and provide useful information for 
management and conservation actions.

Recommendations

We still know so little about migration and life history in 
raptors, more work is needed to resolve this, and population 
genetics approaches can be of great value. Following our 
systematic review, we can build recommendations to help 
maximize the comparability across studies and address the 
current gaps in ongoing research in raptor population genet-
ics. First, our study highlights a gap in species of conserva-
tion concern status and on those located in the Southern 
Hemisphere; and increasing a focus there in future studies 
will be imperative for raptor conservation. This can help to 
enhance both our global understanding of population genet-
ics and the impact of such data on management actions. 
Recent advances in the use and effectiveness of non-invasive 
sampling techniques (e.g., feathers, swab) now allow much-
reduced manipulation time and stress for the bird (Handel 
et al. 2006; Vilstrup et al. 2018). All sampling techniques 
have to remain within the ethical standard. For instance, we 
do not recommend an increase in sampling at the expense of 
the threatened species. One of the priorities in conservation 
programs is to conserve and monitor genetic diversity within 
all species (Hoban et al. 2013; Laikre et al. 2020). By sys-
tematically reported He per individual and per population, 

we can achieve this objective and have a standardized value 
to compare between species in raptors research. Ne—in con-
junction with Nc and the Ne/Nc ratio—has, also, a great 
potential for managing populations as an indicator of genetic 
drift and inbreeding (Frankham 1995; Waples 2016; Wang 
et al. 2016), providing that it is estimated similarly across 
studies and that the limitations of this estimate (e.g., restric-
tive assumptions to the computation) should be taken into 
account when interpreting data. In addition, detailed ana-
lytical procedures for assessing population genetic structure 
(i.e., all parameters and software settings used; see Gilbert 
et al. (2012) or Miller et al. (2020)) should be included as 
well. Having access to the raw data (e.g., genotypes and 
sequences) could also allow the computation of missing 
values, the estimation of Ne or He per individual and per 
population, if not already done in the original study. In fact, 
despite sustained calls for open access data (e.g., Evans and 
Reimer 2009; Pasquetto et al. 2019) and the easy access to 
public data repositories (e.g., Genbank (Benson et al. 2007) 
or Dryad (Vision 2010)), only a few studies (23%) provided 
online access to their data, with 35% in the last 5 years.

Conclusion

Overall, this study reveals important knowledge gaps 
regarding existing studies that have been conducted on 
raptor population genetics. We have assembled a list of 
recommendations that we feel could fill some of these gaps 
as follows: (1) increase the number of studies on threat-
ened species or on species located in the Southern Hemi-
sphere; (2) systematically reported genetic diversity (He); 
(3) increase the number of studies that estimate a demo-
graphic trend based on change of effective population size 
(Ne) and (4) provide open access data. Advances in popu-
lation genetics have been rapid in recent decades (e.g., 
development of new markers and new analyses), resulting 
in a proliferation of published studies, but there is a lack 
of continuity and standardization of methods, such that 
direct comparison of results of these studies is challeng-
ing. Understanding the connectivity and genetic structure 
of populations is important for establishing effective con-
servation plans, particularly for populations or species 
that are threatened and in urgent need of conservation 
actions (Cresswell 2014). We may be at the beginning of 
the genomic revolution in conservation genetics, since the 
technology for direct analysis of genomes of organisms, 
including non-model organisms, becomes increasingly 
available (e.g., for birds the Bird 10,000 Genomes (B10K); 
https:// b10k. genom ics. cn/). In this context, detailed and 
informative population genetic structure data will be of 
prime importance in effective natural resource manage-
ment. For the first time, we have all the elements needed 

https://b10k.genomics.cn/
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at our fingertips to enable the application of population 
genetic studies to global raptor conservation, provided that 
these elements are considered in conservation programs.

A general gap happens between the scientific community 
that produces pure scientific knowledge and practitioners 
involved in conservation and management actions. This 
general observation is particularly true for the translation 
of genetic information to conservation (Arlettaz et al. 2010; 
Shafer et al. 2015; Haig et al. 2016; Domingues et al. 2018). 
This gap may stem from the lack of information transfer 
on methods, results, and interpretation from scientific to 
a larger audience (Arlettaz et al. 2010; Domingues et al. 
2018). Better inclusion of genetic information in conserva-
tion and management policies would require, among others, 
an improvement in the communication between scientists 
and policymakers (Hoban et al. 2013; Haig et al. 2016). This 
is an ongoing work, for instance, the IUCN Conservation 
Genetics Specialist Group, whose active role is to facilitate 
collaboration and communication by promoting the use of 
genetics in conservation management, decision-making, 
and to help in applying genetics to species of concern (see 
Garner et al. 2020). Best conservation practices should then 
imply a standardized use of population genetic tools as well 
as a better transfer of knowledge to practitioners.
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